

LLM-based Models for Transforming of Diachronic Bulgarian Spelling to Contemporary Bulgarian

Kiril Simov, Nikolay Paev, Petya Osenova

Artificial Intelligence and Language Technology Dept., IICT-BAS kivs@bultreebank.org, nikolay.paev@iict.bas.bg, petya@bultreebank.org

1. Bulgarian Spelling Systems (1878-1945)

From 1870 to 1945 eight spelling forms were proposed and applied either officially or non-officially:

- the Marin Drinov's spelling
- the spelling project by the philological committee from 1893
- the spelling project from 1895
- the Ivan Vazov's spelling system from 1899
- the Drinov-Ivanchevski spelling system from 1899
- the Omarchevski spelling system (1921 1923)
- the spelling project of the Historic-philological branch of the Bulgarian Academy of Sciences (1899)
- the Tsankov's spelling system (1923)

Excerpt from a newspaper article published in 1878:

На телеграммата отъ 10 Юлия Главнокомандующийть на войскитв На телеграмата от \varnothing 10 юли \varnothing главнокомандващият \varnothing на войските позволи изнасяньето на хранитв отъ България . позволи изнасян \varnothing ето на храните от \varnothing България .

'In a telegram from 10 July, the Commander-in-chief gave permission to export the food from Bulgaria.'

2. Parallel Corpora for Fine-tuning

- The source data for the task are the collection of periodicals and books provided to us by the National Library "Ivan Vazov" (NLIV) in Plovdiv.
- The data were created in two ways: (1) through an alignment between books with diachronic spelling, and the digital form of the same book published several decades later according to the contemporary spelling; and (2) through a lexicon-based "translation" from the old to the new spelling. The lexicon (**OldNewLex**) was created on the basis of the Bulgarian inflectional lexicon. Each lexical entry in it contains the paradigms of nearly 80 000 lemmas.
- The first dataset **DS-1** (about 200 000 running words) consists of novels and short stories published in the period of 1910-1944 for which we found also electronic versions published after 1945.
- The second dataset **DS-2**, consists of newspaper articles (5 000 tokens).
- We consider the task of mapping between the old and the new spelling norms as a spell checking task.
- **DS-2** was used only for testing.

3. Pre-training Language Models

The mapping is a sequence to sequence task between texts with slight differences in the spelling. Classic subword token based language models are blind to characters.

Hypothesis 1: Models that tokenize on character level are more suitable to the task.

Hypothesis 2: Encoder-Decoder models will perform better. We pre-train character-based T5 and Llama models on 4B Bulgarian words as well as classic subword token based T5 and Llama models.

Tested models:

- Character level T5 353M
- Subword level T5 403M
- Character level Llama 302M
- Subword level Llama 371M
- Subword level EuroLLM 1.7B

4. Experiments and Results

We fine-tuned the models on the dataset **DS-1** for 10 epochs with a peak learning rate of 1e-04. As a baseline we used **OldNewLex** substitutions.

The same models were tested on **DS-2** to assess whether they retain their abilities across a set with different spelling. We do not include a lexicon substitution baseline, because the dataset **DS-2** was constructed with the same lexicon, which makes the results artificially high.

Model type	Architecture	Tokenization level	Whole-Word BLEU
Lexicon substitution (baseline)			87.69%
Llama	Decoder	Character	93.01%
Llama	Decoder	Subword	89.07%
T5	Encoder-Decoder	Character	95.32%
T5	Encoder-Decoder	Subword	92.01%
EuroLLM 1.7B	Decoder	Subword	94.21%

Table 1: BLEU Scores of the tested fine-tuned models on the test split of DS-1

Model type	Architecture	Tokenization level	Whole-Word BLEU
Llama	Decoder	Character	72.17%
Llama	Decoder	Subword	72.76%
T5	Encoder-Decoder	Character	87.02%
T5	Encoder-Decoder	Subword	80.02%
EuroLLM 1.7B	Decoder	Subword	78.76%

5. Post-editing of the Result

- If the goal is to produce 100 % correct result we need to manually read the whole result.
- In this experiment, we assume that when the two best models *Character-based T5* and *EuroLLM 1.7B* make the same prediction, it is the correct one.
- In order to find the problematic spans in the result we aligned three texts: the *input text* and the *results from the two models* selecting the correct token (**DS-3**)
- The input is necessary when the models do not process some input tokens they are inserted in the alignment. The results from the alignments are sequences of triples \(\lambda \text{tok}_{T5}\), \(\text{tok}_{\text{EuroLLM}}\), \(\text{tok}_{\text{DS-3}}\). We assume that a triple represents a correct transfer if \(\text{tok}_{T5}\) or \(\text{tok}_{\text{EuroLLM}}\) is the same as \(\text{tok}_{\text{DS3}}\):
 The groups of inserted tokens are 147 = 962 tokens.
- In the rest of tokens (5 734) there are three cases:
 - \circ tok_{T5} = tok_{DS3} in 4 736 tokens 82.59% correct correspondences
 - \circ tok_{EuroLLM} = tok_{DS3} in 4 470 tokes 77.95% correct correspondences
 - $\circ \operatorname{tok}_{\mathrm{T5}} = \operatorname{tok}_{\mathrm{DS3}} \operatorname{or} \operatorname{tok}_{\mathrm{EuroLLM}} = \operatorname{tok}_{\mathrm{DS3}} \operatorname{in} 4\,866 84.86\% \operatorname{correct}$
- In this way we reduce the numbers of editings in order to check the correctness of the text.

6. Conclusions and Future work

We present a number of experiments for transforming the combined diachronic Bulgarian spelling system to contemporary Bulgarian. Directions for future work are as follows:

- Extending the datasets further not only in quantity but also in text variety
- Performing similar experiments for improving the OCR quality
- Testing the task with bigger language models
- Providing a deep enough error analysis